
An Automated Modeling Method For
Multiple Detail Levels Of Real-time Trees

Charalampos Koniaris
Affiliation

VR Department, FHW
Athens, Greece

Charalampos.Koniaris@disney.com

Athanasios Gaitatzes
VR Department, FHW

Athens, Greece
Gaitat@fhw.gr

Georgios Papaioannou
Athens University of Economics &

Business
Athens, Greece
Gepap@aueb.gr

Abstract— Rendering realistic outdoor scenes in real-
time applications is a difficult task to accomplish
since the geometric complexity of the objects, and
most notably of trees, is too high for current
hardware to handle efficiently in large amounts.
Our method generates trees with self-similarity, and
later exploits this property by heavily sharing pre-
rendered textures of similar parts of the tree. The
intrinsic tree hierarchy of the trees, combined with
their self-similarity, allows generation of multiple
levels of detail. Here we present the flow of the
processing stage, from the collection of the required
input data until the export of the models in all their
levels of detail as well as related and additional
data.

Keywords : tree; modeling; foliage; rendering;
image-based;

I. INTRODUCTION
Since the beginning of real-time 3D graphics in

consumer applications, representation of convincing
outdoor environments has been a difficult task. That is
because of the inherent need of rendering a large
number of complex objects on screen, since outdoor
environments are rarely empty or barren. One of the
most complex objects to be rendered in real-time in an
outdoor natural environment is a tree. Trees usually
have extremely high geometric complexity and many
techniques and tricks have been used over the years to
represent them in a visually appealing way. In this
paper we present a new technique where we are able
to model a large number of different tree types, given
their parameters and base textures, and generate
models composed of meshes and shared textures for
various levels of detail.

II. PREVIOUS WORK
Much work has been done in the field of both

modeling and rendering trees. In the field of
modeling, Prusinkiewicz et al. in [11] introduced the
capability of L-systems to create botanically correct
trees using sets of rules. Other methods for modeling

are the work of Weber et al. in [16], which has
branches and leaves as components and models only
trees, and the work of Lintermann et al. in [7], in
which one can interactively model any plant type. All
mentioned modeling methods create trees of high
geometric complexity. In the field of rendering, many
techniques have been proposed over the years, both
for real-time and offline rendering. The techniques of
interest for the current paper are for real-time
rendering and can be categorized into image based,
geometry based, and techniques using points and lines
or volumetric textures.

An interesting technique for visualizing forests
proposed by Decaudin et al. in [1], uses volumetric
textures of pre-rendered tree clusters, tiles them
aperiodically, and applies two different rendering
techniques, one for silhouettes and one for an above
view of the forest, using slices. Two major drawbacks
of this technique are the static lighting and the large
amount of texture memory it uses. Another technique
by Deussen et al. in [2] uses points and lines for the
rendering of lower importance geometry in a scene,
but current hardware favors triangle rendering.

Many multi-resolution techniques Rebollo et al. in
[12],[13], Hidalgo et al. in [4] and Remolar in [14]
have been proposed based on the Foliage
Simplification Algorithm (FSA), which uses leaf
collapse (two leaves forming a new one which
contains both) as a triangle reduction method. The
techniques vary mainly in how they select the leaves
to collapse. The method of Hidalgo et al. [4] also
needs a texture artist to compose a texture atlas of the
foliage.

Other techniques focus on more effective
approaches for the reduction of geometry by being
heavily image-based. Jakulin in [5] presented a
method using blended slices, in which the tree foliage
is rendered at various angles and depths, and then the
resulting images are applied on properly placed
quadrilaterals, giving a volumetric feel. The
drawbacks of the method are that the planarity of the
foliage is significantly visible when viewed from

above, and that for his models, it does not provide
levels of detail.

Another technique by Meyer et al. in [9] generates
trees using L-systems to exploit the instancing of
similar geometry, for interactively rendering trees
with shading and shadowing. Lluch et al. in [8]
proposed a method where each branching level of a
tree is independently rendered by three different views
and stored in textures. This method’s drawback is it’s
large footprint in texture memory, especially for
complex trees.

Szijarto et al. in [15] proposed the use of 2.5
dimensional impostors, storing the depth information
of the rendered textures’ actual geometry in their
alpha value and processing it later by shaders, and
placing randomly the leaf clouds on the canopy.
Garcia et al. in [3] proposed the use of impostors and
indirect texturing, maintaining the parallax effect
when changing view angles. Lacewell et al. in [6]
propose the use of billboard clouds, which need large
textures to effectively represent trees with very low
triangle count.

III. ALGORITHM OVERVIEW
Our algorithm is mostly image-based and relies

heavily on its novelty, which is texture sharing, and
preprocessing (Figure 1). The main new idea is that,
given a carefully crafted (i.e. not completely
randomized) tree hierarchy, we can perform render-to-
texture to a node & children of a given level, and
use/reuse the result in all the nodes in that level,
performing the appropriate transformation.

The trees’ generation is based on parameters
which are given in a per-branching level basis. A
branching level is considered the collection of all
branches or leaves that have parents belonging to the
same level, with the trunk being the first level. The
geometry for each branch is not expressed in a global
coordinate system but rather a local transformation is
maintained, as we later need to replace the detailed
geometry with textured impostors depending on the
desired level of detail. The pre-rendered textures can
represent either a single branching level (a single node
in the tree hierarchy), or a hierarchy of branching
levels and are created offline by a high resolution
model of the tree. The branches and trunk are created
using as basis multiple LODs of spline
representations, which are also created in the
preprocessing phase. The generator can use
constrained randomization in the parameters, resulting
in a variety of created trees. Also, LODs can be
automatically generated for such trees, given a
maximum triangle count, using a set of rules of
simplification. Finally, soft shadow maps can be
computed offline for later use using projective
texturing. All the above steps are done in the

preprocessing phase, which results in minimal
computational and storage use at runtime.

IV. DESCRIPTION - USE
The main idea of the technique is to replace parts

of a tree’s geometry with shared pre-rendered
textures. With a well-defined tree structure, all nodes
of a branching level can be replaced by double the
number of quadrilaterals (cross-quads), each couple
textured with two pre-rendered views of any node and
sub-tree of the branching level. This way, LOD levels
can be created by gradual replacement of sub-trees
with single nodes, each composed of two pre-rendered
textured quadrilaterals. Besides sub-tree replacement,
branches (single nodes in hierarchy) can also be
replaced by quadrilaterals textured with a pre-
rendered view of a single branch, giving a greater
control to LOD level tuning. Also, branches, loaded
from files containing spline data, can be assigned a
varied simplified representation of the actual spline,
with varied resolution of the branches’ circular
perimeter shape. This gives even finer control over the
creation of LOD levels.

A. Input Data
An example application can use a set of input data

for the generation of one or more trees and tree types.
These data are ASCII spline data files, containing
geometric information of a curve for an arbitrary
number of detail levels, one or more textures for the
bark of a tree, one or more textures for the leaves, and
finally script files, containing the sets of parameters
for the creation of the tree hierarchy, the texture and
the spline data file it uses. Trees can be assigned an
arbitrary number of leaf types, which can be
distributed randomly, but with controlled weight, on a
branch.

Figure 1. Flow of pre-processing (white = input data, green =
output data, light blue = intermediate steps).

Some of the parameters that can be used for the
generation of a level in a tree are x, y and z rotations
(in the local coordinate system of parent nodes),
scaling, radius, number of child links per branch,
number of created children per child link, function of
length, radius and parent branch length percentages,
start and end positions, node type, spline used (if not
leaf).

B. Spline LOD Creation
For generating multiple levels of detail for

branches and trunk, a method for creating polygonal
representations of splines will be used. A type of
splines that is convenient for this use is Catmull-Rom
splines. The conversion of the splines to a collection
of points can be automated, given as parameter the
error tolerance of the converted spline. A method that
can be used to make the conversion is to compute and
add iteratively the maximum distance points to the
initial set of control points. An output set of points
will be formed by the initial set plus a selection of
evaluated points. Each evaluated point whose distance
from the line formed by the two points of the output
set which enclose it, is maximal, is added and sorted
to the set (maximum distance point). Points are added
until the maximum distance is less than the appointed
error bound. The iterative phase is reflected in the
algorithm in table 1. The representations created this
way, for the number of points they use, approximate
best the actual spline (Figure 2).

Figure 2. Original spline and three of its’ simplified line
representations

C. Tree hierarchy generation
Initially, a high resolution model of the tree needs

to be created, in order to be rendered to textures for
use in the lower resolution models. The method used
for the generation of trees is a simplified component -
based method, where two types of components can be
used, branches and leaves.

A tree is considered as a set of branching levels, each
resulting from a previous one, and leading to another.
The exceptions are the root level (trunk), which has no
parental node, and the leaf level (leaves), which has
no child nodes. All internal nodes produce an arbitrary
number of children (Figure 3). A transformation is
applied to every node in a level, which is the
combination of the transformation of its parental node,
and the transformation that corresponds to its index in
its parent’s child-node list and to the set of parameters
that define the level in which it belongs. At this stage,
randomization in the parameters can occur, but is
restrictive to a subset of the nodes in each level - the
nodes of a single chosen parental node. Because of the
grouping that needs to be done for the rendering of
each level & sub-levels, any two instances of a level
(containing branch, sub-branches and/or leaves) must
be completely identical, so they can later share the
same texture.

D. Render to texture
This step requires a high resolution model of a

tree, in order to render, parts of it or whole, to
textures. For the renderings, an orthographic
projection is needed (to avoid perspective distortion),
with the frustum having same dimensions as two of
the extents of the axis aligned bounding box of the
part to be rendered, thus resulting in an optimal sized
texture. For each rendering, any node can be used,
since by applying its inverse combined matrix, it is
relocated to the origin. An issue which arises is the
variable thickness of the branch in different levels,
which can be partially compensated by scaling the
quadrilateral’s width on which the output texture
should be applied. Due to the fact that all sub-trees of
a node share the same internal branch transformations
(identical shape), their pre-rendered version can be
used as a texture on quadrilaterals which can replace
all nodes on the same level. The nodes should be
rendered with generally neutral lighting conditions,
since lighting can be correct only for the sample node
that was rendered, if the light direction is transformed
along with node’s inverse transformation matrix. Also
one rendering can be used for both faces of a
quadrilateral, since the usually high similarity doesn’t
justify the doubled cost in texture memory.

TABLE I. SPLINE REDUCTION ALGORITHM

Initialize output set with spline’s control points

While error tolerance is lesser than the maximum distance point

• Search between every set nodes in the output set for a local maximum distance point

• If the global maximum distance is greater than the error tolerance,

• Store the maximum distance point, sorted, in the output set

End while

Figure 3. Example texture with concatenated renders.

Since geometry will be replaced by rendered
quadrilaterals, one issue that arises is the planarity of
the quadrilaterals that will be very noticeable from
certain points of view (when view vector is almost
perpendicular to the quadrilateral’s normal). This can
be improved by rendering into two quadrilaterals,
from perpendicular angles (cross-billboards). In this
way, the planarity is reduced, but another issue arises.
If the curvature of the local root branch is high, parts
of the branch deviate enough from its main axis to
make it look doubled, when the two rendered textures
are applied. This can be further avoided by rendering
in the second pass all elements of the first, except of
the local root branch. So, for a n-level tree, having k
different branch types, a complete LOD representation
would require (n-1+ k)*2 number of renderings. The
viewing boxes have dimensions the x, y & z, y
couples of extents of the axis aligned bounding box of
any, relocated to the origin, node rendered.

E. LOD information generation
Multiple levels of detail can be achieved with

combinations of three types of simplification,
mentioned in order of significance/triangle count
reduction. They are: reduction from multiple
geometric tree levels to textured cross-billboards,

reduction from branch geometry to textured
quadrilateral and simplification of branch geometry.

A relatively simple system can be constructed to
automatically select appropriate detail levels for a
given limit on triangle count. Instead of computing the
triangle count for all possible combinations, a priority-
based approach can be taken. The information needed
is: triangle counts for every unique branch type in all
of its LODs, number of tree levels and number of
children per node. The algorithm begins from the
highest resolution model (geometric branches at their
highest LOD and textured quadrilateral leaves) and
starts simplifying parts till the total triangle count runs
below the appointed limit. The priorities that apply to
this simplification method are essentially the order in
which the various simplifications occur. Also for
visual integrity, every LOD level computation can
have as starting input detail level the previous
computed LOD. With this change, wild deviations of
branch LODs can be avoided and no LOD can be the
same with another one, since it starts immediately
simplifying. Also, two simplifications for the LOD of
geometry of the branches can be embedded into the
algorithm. First, the closer a level of a branch is to the
root level, the larger and more detailed it will be. With
this in mind, the LOD generator can select only one

LOD for the closest to the root geometrically
represented branch available, and then decrement
linearly the detail levels of the splines of all other
levels containing geometric representations of
branches. Second, the last level in which a geometric
representation of a branch is used is usually the most
occluded by its surrounding foliage. So, the generator
can select for these levels always the lowest resolution
geometric LOD available. This effectively reduces the
number of rendered triangles, preserving the volume
of the branches. Figure 5 shows multiple levels of
detail of a generated tree while an example of LOD
generator priorities is illustrated in Figure 4.

F. Soft shadow maps
Since high-resolution models are initially required

and computations are done offline, it is possible to
compute and store several baked soft shadow maps for
later use. The pre-computed shadow maps are best
used for directional light, since the changes are more
subtle than a positional one, and the distance of the
light source doesn’t matter. A solution to the problem
of covering all the potential shadow forms is to
compute them at specific equally distributed intervals
and fade between them. For an acceptable degree of
realism, nine light directions could be used. One
(vertical) should be directed towards the negative y-
axis and the rest (planar) could form a 45 degree angle
with x-z plane and be distributed equally on the
appropriate horizontal ring on the surface of the unit
sphere. In this way, according to the light’s direction,
one to three soft shadow textures can be combined
(vertical and two planar). The soft shadows can be
created by sampling points on a circle ‘wrapped’ on
the unit sphere, with the point on the unit sphere
which intersects with a given light direction as center.
By sampling more points, the shadows become
smoother and more realistic. The bands are the
concentric circles formed with center the point of
intersection of the light direction with the unit sphere.

The lesser the bands and the sampling rate are, the
lesser the quality of the soft shadows becomes (Figure
6). As the distance of the sampled points from the
center of the circle becomes greater, the amount of
shadow contribution decreases, resulting in soft
shadow outlines. All shadows can be stored in a single
texture, along with the image-encoded center of the
base of the trunk (first 4 bytes). They could be used
with projective texturing methods for realistic results
to be obtained. One issue that arises with this
approach is the increased required texture memory for
a single tree type.

Figure 4. Example LOD generator priorities (top to bottom),
limited to four combined level renderings.

Figure 5. Foliage simplification – fill & wireframe modes. The rightmost three use the same shared pre-rendered texture.

Figure 6. Example low (upper) and high (lower) resolution soft shadow
textures

G. Output data
The output data from a preprocessing application, using all

the above, can be passed to a real-time application, should be a
set of textures and models. The textures should include the
original bark and an image containing a concatenation of all the
leaf textures, the created rendered textures of the various
combined levels and branch types and finally the nine soft
shadow textures (or a single atlas). The models can be
separated into two groups, one containing all branches which
are represented by their actual geometry, and the other
containing all the textured representations, either branch, or
combined levels or leaves. These two groups can be
constructed for each LOD level, so the application should be
able to handle easily the models in respect to the drawing
method required (no transparency and normal lighting for
geometry, transparency and faked lighting for pre-rendered
textured quadrilaterals).

V. RENDERING - PERFORMANCE

With the suggested procedure, we can generate meshes
(composed of vertices, UVs & normals) with their materials &
textures, ready for rendering. This means that any performance
metric of the actual rendering won’t actually show the
performance of the tree models themselves, but the
performance of any mesh-rendering technique used. We used
the fixed function pipeline, display lists & a simple LOD
system to select the appropriate level of a tree based on
distance. The results in the test system were the following:

Trees Triangles LODs triangle num Fps

5929 5,500,000 10,640 – 836 – 248 – 4 9.1

5929 960,000 836 – 248 – 4 14.3

5929 370,000 248 – 4 18.2

381 5,500,000 52,000 – 4 30

The system used was an Intel Core2 Quad 2.50GHz CPU,
with 2GB DDR3 RAM & a GeForce 9800GTX 512MB
graphics card.

The bad performance that was experienced with the 6K
trees is because of the inexistent batching, and it can be shown
with the last example that the main bottleneck is the number of
calls. With appropriate use of hardware instancing we could
have obtained much better results.

The texture size used for the above was an uncompressed
512x128 RGBA 32bit texture. Different sizes didn’t make
difference since only one tree type could be used and the
bottleneck was elsewhere. The POT was a requirement which
doesn’t exist anymore, resulting also in much wasted space, so
without this restriction, we could have used hardware
supported compression (e.g. DXT1/3/5) along with NPOT
sizes to make better use of texture memory.

There are many recent techniques that could have been
used given there were no restrictions, such as shaders, vertex
buffer objects and hardware instancing, which should further
improve the performance and quality of rendering.

VI. SPECIAL CONSIDERATIONS

A. Using randomization for tree generation

The randomization process should be heavily tied to the
generation process, in order to obtain correct results. The
generation process depends on the randomization of the
parameters, for a huge number of tree variations to be possible.
The randomization process is limited in effect by the logic of
the tree creation. The major factor of tree geometry
simplification is the collapse of a branch node and sub-tree,
into two rendered quadrilaterals. Since the texture of the
quadrilaterals will be shared by all the nodes on the level of the
node that collapsed, all randomizations applied to all nodes of
the collapsed node’s sub-tree must be identical to every set of
randomizations in its neighboring nodes. This is better
illustrated in Figure 7.

Figure 7. An example tree hierarchy using Rx parameter randomizations

B. Rendered texture filtering

The rendered and leaf textures have alpha components to
specify transparency. Two methods that can be used for
displaying them are using alpha testing, and pre-multiplied
alpha blending. These methods generally do not cause
problems, especially if multisampling / sample alpha to
coverage is used instead of raw alpha test.

Besides alpha test, back-to-front blending can also be used
for the canopy, using the following: First, for each tree canopy
(sub-model storing only billboards, mentioned in section 4.7),
we can store sets of indices for sample directions on a unit
sphere. Then, when rendering each tree, we can select the
index set depending on the vector from the camera to the center
of the tree. Still this might create problems when trees are close
to each other, resulting in sometimes the ‘front’ trees rendered
before the ‘back’ ones.

VII. CONCLUSION

The method described above is generally a simple to
implement way of generating multiple trees of arbitrary
complexity. In most cases, convincing models of low triangle
counts can be achieved, which are ideal for applications that
have a low vertex throughput budget. The only manual work
that needs to be done is the creation of scripts and splines. The
parameters can be slightly randomized, to produce from the
same script different trees each time. This can also be achieved
by assigning different input data, especially spline files. Also,
since models and their LODs are created offline, there is almost

no computation to be done in the client application, which
further saves CPU and GPU processing power. In newer
graphics cards the whole preprocessing can be ported
completely to the GPU resulting in a huge increase in speed,
thus enabling the parameters and inputs to be specified
interactively, providing immediate feedback to the
user/modeler.

The main disadvantage of the presented method is the
inability to create specific types of trees, or completely realistic
ones, since the transformations are applied only locally (being
parent-dependent) and not in a greater or global scope (e.g.
global deformations such as tropisms cannot be created).
Fortunately, such cases are not very common. Another
disadvantage is the inherently bad lighting, since it cannot be
copied and transformed as data can. A solution for realistic
lighting would be to compute and store instead diffuse and
normal maps (and maybe depth maps), but that would require
more texture memory and the additional per-pixel
computations on the GPU. A last major drawback is the
potentially large texture it creates, making prohibitive the use
of many different tree types in a virtual environment. Although
the resolution of the output textures can be tweaked, if it is set
low enough, the visual quality will drop considerably.

Despite the drawbacks, the method can be enriched to
produce a more complete tree model-generating solution. Two
features that can be added are wind animation and realistic
lighting, mentioned above. Also, hardware accelerated
features of newer graphics cards could be exploited, especially
the programmable pipeline, for better and much faster results
in the preprocessing phase as well as the real-time phase.
While these generally make the trees more dependent on the
client application and used hardware, they offer a significantly
better degree of realism.

The system was used successfully, generating tree models
which were used for several VR productions for FHW. The
only problem was that the script-based method for specifying
rotations made the modeling learning curve a little steeper
than expected.

Figure 8. LOD information generated automatically during the creation of 180 trees (13 different species with variations)

Figure 9. Some simple scenes showing forests populated by poplars, palms & olive trees.

ACKNOWLEDGMENT
Thanks to Dimitrios Christopoulos, for his continuous

support in the implementation of various aspects of this work,
and Panopoulos Panagiotis for all the texture generation work
required. Thanks to Disney for funding all the presentation-
related expenses.

REFERENCES

[1] 1. Philippe Decaudin, Fabrice Neyret. Rendering Forest Scenes in Real-
Time, EG 2004.

[2] 2. Olive Deussen, Cursten Colditz, Marc Stamminger, George Drettakis.
Interactive Visualisation of Complex Plant Ecosystems, IEEV 2002.

[3] 3. Ismael Garcia, Mateu Sbert, Laszlo Szirmay-Kalos. Leaf Cluster
Impostors for Tree Rendering with Parallax, EG 2005.

[4] 4. Jose L. Hidalgo, Francisco J. Abad, Emilio Camahort. Simplification
for Efficient Rendering of Tree Foliage, VIIP 2006.

[5] 5. Aleks Jakulin. Interactive Vegetation Rendering with Slicing and
Blending, EG 2000.

[6] 6. J. Dylan Lacewell, Dave Edwards, Peter Shirley, William B.
Thompson. Stochastic Billboard Clouds for Interactive Foliage
Rendering, JGT 2006.

[7] 7. Bernd Linterman, Oliver Deussen. Interactive Modeling of Plants,
CGA 1999.

[8] 8. Javier Lluch, Emilio Camahort, Roberto Vivo. An Image-Based
Multiresolution Model for Interactive Foliage Rendering, WSCG 2004.

[9] 9. Stephan Mantler, Robert F. Tobler, Anton L. Fuhrmann. The State of
the Art in Realtime Rendering of Vegetation, VRVIS 2003.

[10] 10. Alexandre Meyer, Fabrice Neyret, Pierre Poulin. Interactive
Rendering of Trees with Shading and Shadows, EGWR 2001.

[11] 11. Przemyslaw Prusinkiewicz, Aristid Lindenmayer. The Algorithmic
Beauty of Plants, 1990.

[12] 12. C. Rebollo, I. Remolar, M. Chover, J. Gumbau. Hardware-oriented
Visualisation of Trees, DGCI 2006.

[13] 13. C.Rebollo, I. Remolar, M. Chover, O. Ripolles. An efficient
continuous level of detail model for foliage, WSCG 2006.

[14] 14. I. Remolar, M. Chover, J. Ribelles, O. Belmonte. View-Dependent
Multiresolution Model for Foliage, WSCG 2003.

[15] 15. Gabor Szijarto, Jozsef Koloszar. Real-time Hardware Accelerated
Rendering of Forests at Human Scale, WSCG 2004.

[16] 16. Jason Weber, Joseph Penn. Creation and Rendering of Realistic
Trees, SIGGRAPH ’95.

