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Abstract— Rendering realistic outdoor scenes in real-
time applications is a difficult task to accomplish 
since the geometric complexity of the objects, and 
most notably of trees, is too high for current 
hardware to handle efficiently in large amounts. 
Our method generates trees with self-similarity, and 
later exploits this property by heavily sharing pre-
rendered textures of similar parts of the tree. The 
intrinsic tree hierarchy of the trees, combined with 
their self-similarity, allows generation of multiple 
levels of detail. Here we present the flow of the 
processing stage, from the collection of the required 
input data until the export of the models in all their 
levels of detail as well as related and additional 
data. 
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I.  INTRODUCTION  
Since the beginning of real-time 3D graphics in 

consumer applications, representation of convincing 
outdoor environments has been a difficult task. That is 
because of the inherent need of rendering a large 
number of complex objects on screen, since outdoor 
environments are rarely empty or barren. One of the 
most complex objects to be rendered in real-time in an 
outdoor natural environment is a tree. Trees usually 
have extremely high geometric complexity and many 
techniques and tricks have been used over the years to 
represent them in a visually appealing way.  In this 
paper we present a new technique where we are able 
to model a large number of different tree types, given 
their parameters and base textures, and generate 
models composed of meshes and shared textures for 
various levels of detail. 

II. PREVIOUS WORK 
Much work has been done in the field of both 

modeling and rendering trees. In the field of 
modeling, Prusinkiewicz et al. in [11] introduced the 
capability of L-systems to create botanically correct 
trees using sets of rules. Other methods for modeling 

are the work of Weber et al. in [16], which has 
branches and leaves as components and models only 
trees, and the work of Lintermann et al. in [7], in 
which one can interactively model any plant type. All 
mentioned modeling methods create trees of high 
geometric complexity. In the field of rendering, many 
techniques have been proposed over the years, both 
for real-time and offline rendering. The techniques of 
interest for the current paper are for real-time 
rendering and can be categorized into image based, 
geometry based, and techniques using points and lines 
or volumetric textures.  

An interesting technique for visualizing forests 
proposed by Decaudin et al. in [1], uses volumetric 
textures of pre-rendered tree clusters, tiles them 
aperiodically, and applies two different rendering 
techniques, one for silhouettes and one for an above 
view of the forest, using slices. Two major drawbacks 
of this technique are the static lighting and the large 
amount of texture memory it uses. Another technique 
by Deussen et al. in [2] uses points and lines for the 
rendering of lower importance geometry in a scene, 
but current hardware favors triangle rendering.    

Many multi-resolution techniques Rebollo et al. in 
[12],[13], Hidalgo et al. in [4] and Remolar in [14] 
have been proposed based on the Foliage 
Simplification Algorithm (FSA), which uses leaf 
collapse (two leaves forming a new one which 
contains both) as a triangle reduction method. The 
techniques vary mainly in how they select the leaves 
to collapse. The method of Hidalgo et al. [4] also 
needs a texture artist to compose a texture atlas of the 
foliage.  

Other techniques focus on more effective 
approaches for the reduction of geometry by being 
heavily image-based. Jakulin in [5] presented a 
method using blended slices, in which the tree foliage 
is rendered at various angles and depths, and then the 
resulting images are applied on properly placed 
quadrilaterals, giving a volumetric feel. The 
drawbacks of the method are that the planarity of the 
foliage is significantly visible when viewed from 



above, and that for his models, it does not provide 
levels of detail.   

Another technique by Meyer et al. in [9] generates 
trees using L-systems to exploit the instancing of 
similar geometry, for interactively rendering trees 
with shading and shadowing. Lluch et al. in [8] 
proposed a method where each branching level of a 
tree is independently rendered by three different views 
and stored in textures. This method’s drawback is it’s 
large footprint in texture memory, especially for 
complex trees.   

Szijarto et al. in [15] proposed the use of 2.5 
dimensional impostors, storing the depth information 
of the rendered textures’ actual geometry in their 
alpha value and processing it later by shaders, and 
placing randomly the leaf clouds on the canopy.  
Garcia et al. in [3] proposed the use of impostors and 
indirect texturing, maintaining the parallax effect 
when changing view angles.  Lacewell et al. in [6] 
propose the use of billboard clouds, which need large 
textures to effectively represent trees with very low 
triangle count. 

III. ALGORITHM OVERVIEW 
Our algorithm is mostly image-based and relies 

heavily on its novelty, which is texture sharing, and 
preprocessing (Figure 1).  The main new idea is that, 
given a carefully crafted (i.e. not completely 
randomized) tree hierarchy, we can perform render-to-
texture to a node & children of a given level, and 
use/reuse the result in all the nodes in that level, 
performing the appropriate transformation. 

The trees’ generation is based on parameters 
which are given in a per-branching level basis. A 
branching level is considered the collection of all 
branches or leaves that have parents belonging to the 
same level, with the trunk being the first level. The 
geometry for each branch is not expressed in a global 
coordinate system but rather a local transformation is 
maintained, as we later need to replace the detailed 
geometry with textured impostors depending on the 
desired level of detail. The pre-rendered textures can 
represent either a single branching level (a single node 
in the tree hierarchy), or a hierarchy of branching 
levels and are created offline by a high resolution 
model of the tree. The branches and trunk are created 
using as basis multiple LODs of spline 
representations, which are also created in the 
preprocessing phase. The generator can use 
constrained randomization in the parameters, resulting 
in a variety of created trees. Also, LODs can be 
automatically generated for such trees, given a 
maximum triangle count, using a set of rules of 
simplification. Finally, soft shadow maps can be 
computed offline for later use using projective 
texturing. All the above steps are done in the 

preprocessing phase, which results in minimal 
computational and storage use at runtime. 

IV. DESCRIPTION - USE 
The main idea of the technique is to replace parts 

of a tree’s geometry with shared pre-rendered 
textures. With a well-defined tree structure, all nodes 
of a branching level can be replaced by double the 
number of quadrilaterals (cross-quads), each couple 
textured with two pre-rendered views of any node and 
sub-tree of the branching level. This way, LOD levels 
can be created by gradual replacement of sub-trees 
with single nodes, each composed of two pre-rendered 
textured quadrilaterals. Besides sub-tree replacement, 
branches (single nodes in hierarchy) can also be 
replaced by quadrilaterals textured with a pre-
rendered view of a single branch, giving a greater 
control to LOD level tuning. Also, branches, loaded 
from files containing spline data, can be assigned a 
varied simplified representation of the actual spline, 
with varied resolution of the branches’ circular 
perimeter shape. This gives even finer control over the 
creation of LOD levels. 

A. Input Data 
An example application can use a set of input data 

for the generation of one or more trees and tree types. 
These data are ASCII spline data files, containing 
geometric information of a curve for an arbitrary 
number of detail levels, one or more textures for the 
bark of a tree, one or more textures for the leaves, and 
finally script files, containing the sets of parameters 
for the creation of the tree hierarchy, the texture and 
the spline data file it uses. Trees can be assigned an 
arbitrary number of leaf types, which can be 
distributed randomly, but with controlled weight, on a 
branch.  

 

Figure 1.  Flow of pre-processing (white = input data, green = 
output data, light blue = intermediate steps). 



Some of the parameters that can be used for the 
generation of a level in a tree are x, y and z rotations 
(in the local coordinate system of parent nodes), 
scaling, radius, number of child links per branch, 
number of created children per child link, function of 
length, radius and parent branch length percentages, 
start and end positions, node type, spline used (if not 
leaf).   

B. Spline LOD Creation   
For generating multiple levels of detail for 

branches and trunk, a method for creating polygonal 
representations of splines will be used. A type of 
splines that is convenient for this use is Catmull-Rom 
splines. The conversion of the splines to a collection 
of points can be automated, given as parameter the 
error tolerance of the converted spline. A method that 
can be used to make the conversion is to compute and 
add iteratively the maximum distance points to the 
initial set of control points. An output set of points 
will be formed by the initial set plus a selection of 
evaluated points. Each evaluated point whose distance 
from the line formed by the two points of the output 
set which enclose it, is maximal, is added and sorted 
to the set (maximum distance point). Points are added 
until the maximum distance is less than the appointed 
error bound. The iterative phase is reflected in the 
algorithm in table 1. The representations created this 
way, for the number of points they use, approximate 
best the actual spline (Figure 2).  

 

Figure 2.  Original spline and three of its’ simplified line 
representations 

C.  Tree hierarchy generation  
Initially, a high resolution model of the tree needs 

to be created, in order to be rendered to textures for 
use in the lower resolution models. The method used 
for the generation of trees is a simplified component - 
based method, where two types of components can be 
used, branches and leaves.   

A tree is considered as a set of branching levels, each 
resulting from a previous one, and leading to another. 
The exceptions are the root level (trunk), which has no 
parental node, and the leaf level (leaves), which has 
no child nodes. All internal nodes produce an arbitrary 
number of children (Figure 3).  A transformation is 
applied to every node in a level, which is the 
combination of the transformation of its parental node, 
and the transformation that corresponds to its index in 
its parent’s child-node list and to the set of parameters 
that define the level in which it belongs. At this stage, 
randomization in the parameters can occur, but is 
restrictive to a subset of the nodes in each level - the 
nodes of a single chosen parental node. Because of the 
grouping that needs to be done for the rendering of 
each level & sub-levels, any two instances of a level 
(containing branch, sub-branches and/or leaves) must 
be completely identical, so they can later share the 
same texture.   

D. Render to texture  
This step requires a high resolution model of a 

tree, in order to render, parts of it or whole, to 
textures. For the renderings, an orthographic 
projection is needed (to avoid perspective distortion), 
with the frustum having same dimensions  as two of 
the extents of the axis aligned bounding box of the 
part to be rendered, thus resulting in an optimal sized 
texture. For each rendering, any node can be used, 
since by applying its inverse combined matrix, it is 
relocated to the origin. An issue which arises is the 
variable thickness of the branch in different levels, 
which can be partially compensated by scaling the 
quadrilateral’s width on which the output texture 
should be applied. Due to the fact that all sub-trees of 
a node share the same internal branch transformations 
(identical shape), their pre-rendered version can be 
used as a texture on quadrilaterals which can replace 
all nodes on the same level. The nodes should be 
rendered with generally neutral lighting conditions, 
since lighting can be correct only for the sample node 
that was rendered, if the light direction is transformed 
along with node’s inverse transformation matrix. Also 
one rendering can be used for both faces of a 
quadrilateral, since the usually high similarity doesn’t 
justify the doubled cost in texture memory.  

 

 

  

TABLE I.  SPLINE REDUCTION ALGORITHM 

Initialize output set with spline’s control points  

While  error tolerance is lesser than the maximum distance point   

• Search between every set nodes in the output set for a local maximum distance point  



• If the global maximum distance is greater than the error tolerance,  

• Store the maximum distance point, sorted, in the output set  

End while 

 

 

Figure 3.  Example texture with concatenated renders.  

Since geometry will be replaced by rendered 
quadrilaterals, one issue that arises is the planarity of 
the quadrilaterals that will be very noticeable from 
certain points of view (when view vector is almost 
perpendicular to the quadrilateral’s normal). This can 
be improved by rendering into two quadrilaterals, 
from perpendicular angles (cross-billboards). In this 
way, the planarity is reduced, but another issue arises. 
If the curvature of the local root branch is high, parts 
of the branch deviate enough from its main axis to 
make it look doubled, when the two rendered textures 
are applied. This can be further avoided by rendering 
in the second pass all elements of the first, except of 
the local root branch. So, for a n-level tree, having k 
different branch types, a complete LOD representation 
would require (n-1+ k)*2 number of renderings. The 
viewing boxes have dimensions the x, y & z, y 
couples of extents of the axis aligned bounding box of 
any, relocated to the origin, node rendered.  

E. LOD information generation  
Multiple levels of detail can be achieved with 

combinations of three types of simplification, 
mentioned in order of significance/triangle count 
reduction. They are: reduction from multiple 
geometric tree levels to textured cross-billboards, 

reduction from branch geometry to textured 
quadrilateral and simplification of branch geometry.  

A relatively simple system can be constructed to 
automatically select appropriate detail levels for a 
given limit on triangle count. Instead of computing the 
triangle count for all possible combinations, a priority-
based approach can be taken. The information needed 
is: triangle counts for every unique branch type in all 
of its LODs, number of tree levels and number of 
children per node. The algorithm begins from the 
highest resolution model (geometric branches at their 
highest LOD and textured quadrilateral leaves) and 
starts simplifying parts till the total triangle count runs 
below the appointed limit. The priorities that apply to 
this simplification method are essentially the order in 
which the various simplifications occur. Also for 
visual integrity, every LOD level computation can 
have as starting input detail level the previous 
computed LOD. With this change, wild deviations of 
branch LODs can be avoided and no LOD can be the 
same with another one, since it starts immediately 
simplifying. Also, two simplifications for the LOD of 
geometry of the branches can be embedded into the 
algorithm. First, the closer a level of a branch is to the 
root level, the larger and more detailed it will be. With 
this in mind, the LOD generator can select only one 



LOD for the closest to the root geometrically 
represented branch available, and then decrement 
linearly the detail levels of the splines of all other 
levels containing geometric representations of 
branches. Second, the last level in which a geometric 
representation of a branch is used is usually the most 
occluded by its surrounding foliage. So, the generator 
can select for these levels always the lowest resolution 
geometric LOD available. This effectively reduces the 
number of rendered triangles, preserving the volume 
of the branches. Figure 5 shows multiple levels of 
detail of a generated tree while an example of LOD 
generator priorities is illustrated in Figure 4. 

F. Soft shadow maps  
Since high-resolution models are initially required 

and computations are done offline, it is possible to 
compute and store several baked soft shadow maps for 
later use. The pre-computed shadow maps are best 
used for directional light, since the changes are more 
subtle than a positional one, and the distance of the 
light source doesn’t matter. A solution to the problem 
of covering all the potential shadow forms is to 
compute them at specific equally distributed intervals 
and fade between them. For an acceptable degree of 
realism, nine light directions could be used. One 
(vertical) should be directed towards the negative y-
axis and the rest (planar) could form a 45 degree angle 
with x-z plane and be distributed equally on the 
appropriate horizontal ring on the surface of the unit 
sphere. In this way, according to the light’s direction, 
one to three soft shadow textures can be combined 
(vertical and two planar). The soft shadows can be 
created by sampling points on a circle ‘wrapped’ on 
the unit sphere, with the point on the unit sphere 
which intersects with a given light direction as center. 
By sampling more points, the shadows become 
smoother and more realistic. The bands are the 
concentric circles formed with center the point of 
intersection of the light direction with the unit sphere. 

The lesser the bands and the sampling rate are, the 
lesser the quality of the soft shadows becomes (Figure 
6). As the distance of the sampled points from the 
center of the circle becomes greater, the amount of 
shadow contribution decreases, resulting in soft 
shadow outlines. All shadows can be stored in a single 
texture, along with the image-encoded center of the 
base of the trunk (first 4 bytes). They could be used 
with projective texturing methods for realistic results 
to be obtained. One issue that arises with this 
approach is the increased required texture memory for 
a single tree type. 

 

 

Figure 4.  Example LOD generator priorities (top to bottom), 
limited to four combined level renderings. 

 

 

Figure 5.  Foliage simplification – fill & wireframe modes. The rightmost three use the same shared pre-rendered texture. 



 

 

 

Figure 6.  Example low (upper) and high (lower) resolution soft shadow 
textures  

G.  Output data 
The output data from a preprocessing application, using all 

the above, can be passed to a real-time application, should be a 
set of textures and models. The textures should include the 
original bark and an image containing a concatenation of all the 
leaf textures, the created rendered textures of the various 
combined levels and branch types and finally the nine soft 
shadow textures (or a single atlas). The models can be 
separated into two groups, one containing all branches which 
are represented by their actual geometry, and the other 
containing all the textured representations, either branch, or 
combined levels or leaves. These two groups can be 
constructed for each LOD level, so the application should be 
able to handle easily the models in respect to the drawing 
method required (no transparency and normal lighting for 
geometry, transparency and faked lighting for pre-rendered 
textured quadrilaterals). 

V. RENDERING - PERFORMANCE 
 

With the suggested procedure, we can generate meshes 
(composed of vertices, UVs & normals) with their materials & 
textures, ready for rendering. This means that any performance 
metric of the actual rendering won’t actually show the 
performance of the tree models themselves, but the 
performance of any mesh-rendering technique used. We used 
the fixed function pipeline, display lists & a simple LOD 
system to select the appropriate level of a tree based on 
distance. The results in the test system were the following: 

Trees Triangles LODs triangle num Fps

5929 5,500,000 10,640 – 836 – 248 – 4 9.1

5929 960,000 836 – 248 – 4  14.3

5929 370,000 248 – 4  18.2

381 5,500,000 52,000 – 4  30

 

The system used was an Intel Core2 Quad 2.50GHz CPU, 
with 2GB DDR3 RAM & a GeForce 9800GTX 512MB 
graphics card. 

The bad performance that was experienced with the 6K 
trees is because of the inexistent batching, and it can be shown 
with the last example that the main bottleneck is the number of 
calls. With appropriate use of hardware instancing we could 
have obtained much better results. 

The texture size used for the above was an uncompressed 
512x128 RGBA 32bit texture. Different sizes didn’t make 
difference since only one tree type could be used and the 
bottleneck was elsewhere. The POT was a requirement which 
doesn’t exist anymore, resulting also in much wasted space, so 
without this restriction, we could have used hardware 
supported compression (e.g. DXT1/3/5) along with NPOT 
sizes to make better use of texture memory. 

There are many recent techniques that could have been 
used given there were no restrictions, such as shaders, vertex 
buffer objects and hardware instancing, which should further 
improve the performance and quality of rendering. 

VI. SPECIAL CONSIDERATIONS 

A.  Using randomization for tree generation 
 

The randomization process should be heavily tied to the 
generation process, in order to obtain correct results. The 
generation process depends on the randomization of the 
parameters, for a huge number of tree variations to be possible. 
The randomization process is limited in effect by the logic of 
the tree creation. The major factor of tree geometry 
simplification is the collapse of a branch node and sub-tree, 
into two rendered quadrilaterals. Since the texture of the 
quadrilaterals will be shared by all the nodes on the level of the 
node that collapsed, all randomizations applied to all nodes of 
the collapsed node’s sub-tree must be identical to every set of 
randomizations in its neighboring nodes. This is better 
illustrated in Figure 7.  



 

 
Figure 7.  An example tree hierarchy using Rx parameter randomizations 

B.  Rendered texture filtering  
 

The rendered and leaf textures have alpha components to 
specify transparency. Two methods that can be used for 
displaying them are using alpha testing, and pre-multiplied 
alpha blending. These methods generally do not cause 
problems, especially if multisampling / sample alpha to 
coverage is used instead of raw alpha test. 

Besides alpha test, back-to-front blending can also be used 
for the canopy, using the following: First, for each tree canopy 
(sub-model storing only billboards, mentioned in section 4.7), 
we can store sets of indices for sample directions on a unit 
sphere. Then, when rendering each tree, we can select the 
index set depending on the vector from the camera to the center 
of the tree. Still this might create problems when trees are close 
to each other, resulting in sometimes the ‘front’ trees rendered 
before the ‘back’ ones.  

VII. CONCLUSION  
 

The method described above is generally a simple to 
implement way of generating multiple trees of arbitrary 
complexity. In most cases, convincing models of low triangle 
counts can be achieved, which are ideal for applications that 
have a low vertex throughput budget. The only manual work 
that needs to be done is the creation of scripts and splines. The 
parameters can be slightly randomized, to produce from the 
same script different trees each time. This can also be achieved 
by assigning different input data, especially spline files. Also, 
since models and their LODs are created offline, there is almost 

no computation to be done in the client application, which 
further saves CPU and GPU processing power. In newer 
graphics cards the whole preprocessing can be ported 
completely to the GPU resulting in a huge increase in speed, 
thus enabling the parameters and inputs to be specified 
interactively, providing immediate feedback to the 
user/modeler. 

The main disadvantage of the presented method is the 
inability to create specific types of trees, or completely realistic 
ones, since the transformations are applied only locally (being 
parent-dependent) and not in a greater or global scope (e.g. 
global deformations such as tropisms cannot be created). 
Fortunately, such cases are not very common. Another 
disadvantage is the inherently bad lighting, since it cannot be 
copied and transformed as data can. A solution for realistic 
lighting would be to compute and store instead diffuse and 
normal maps (and maybe depth maps), but that would require 
more texture memory and the additional per-pixel 
computations on the GPU. A last major drawback is the 
potentially large texture it creates, making prohibitive the use 
of many different tree types in a virtual environment. Although 
the resolution of the output textures can be tweaked, if it is set 
low enough, the visual quality will drop considerably.  

Despite the drawbacks, the method can be enriched to 
produce a more complete tree model-generating solution. Two 
features that can be added are wind animation and realistic 
lighting, mentioned above. Also, hardware accelerated 
features of newer graphics cards could be exploited, especially 
the programmable pipeline, for better and much faster results 
in the preprocessing phase as well as the real-time phase. 
While these generally make the trees more dependent on the 
client application and used hardware, they offer a significantly 
better degree of realism.  

The system was used successfully, generating tree models 
which were used for several VR productions for FHW.  The 
only problem was that the script-based method for specifying 
rotations made the modeling learning curve a little steeper 
than expected. 

 

 

 
Figure 8.  LOD information generated automatically during the creation of 180 trees (13 different species with variations)  

 



  

 
Figure 9.  Some simple scenes showing forests populated by poplars, palms & olive trees.
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