
Interactive Volume-based Indirect Illumination
of Dynamic Scenes

Athanasios Gaitatzes and Pavlos Mavridis and Georgios Papaioannou

Abstract In this paper we present a novel real-time algorithm to compute the global
illumination of dynamic scenes with arbitrarily complex dynamic illumination. We
use a virtual point light (VPL) illumination model on the volume representation
of the scene. Unlike other dynamic VPL-based real-time approaches, our method
handles occlusion (shadowing and masking) caused by the interference of geometry
and is able to estimate diffuse inter-reflections from multiple light bounces.

1 Introduction

In order to synthesize photo-realistic images we need to capture the complex interac-
tions of light with the environment. Light follows many different paths distributing
energy among the object surfaces. This interplay between light and object surfaces
can be classified as local illumination and global illumination. Local illumination
algorithms take into account only the light which arrives at an object directly from
a light source. Global Illumination algorithms, on the other hand, take into account
the entire scene, where the light rays can bounce off the different objects in the
environment or be obstructed and absorbed. Reflection, refraction and diffuse inter-
reflection are examples of complex light interactions with a high computational cost
that is usually not available for real-time applications.

Athanasios Gaitatzes
University of Cyprus, 75 Kallipoleos St., P.O.Box.20537, Nicosia CY-1678, Cyprus,
e-mail: gaitat@yahoo.com

Pavlos Mavridis
Athens University of Economics and Business, Dept. of Informatics, 76 Patission St., Athens
10434, Greece, e-mail: pmavridis@gmail.com

Georgios Papaioannou
Athens University of Economics and Business, Dept. of Informatics, 76 Patission St., Athens
10434, Greece, e-mail: gepap@aueb.gr

1

gaitat@yahoo.com
pmavridis@gmail.com
gepap@aueb.gr

2 A. Gaitatzes and P. Mavridis and G. Papaioannou

In this paper we propose a method that produces photo-realistic images of dif-
fuse, dynamic environments in real time, by estimating the illumination at discrete
locations in the environment and applying the results on the scene geometry. This
way, we can capture shadowing effects as well as diffuse inter-reflections from mul-
tiple secondary light bounces. The method we propose uses a uniform discretization
of the scene, incorporating geometry information in the discretization structure. In-
stead of using the shadow map data as virtual point lights (VPLs) [3] [4] [9], our
method performs a complete scene voxelization and is thus able to include occlusion
information along with any direct, indirect and self-emitted illumination. Further-
more, it is capable of calculating global illumination from multiple light bounces
and include energy from emissive materials in the process.

2 Previous Work

The use of a regular or hierarchical space discretization in global illumination is
not new. Several non-real-time algorithms in the past have utilized volume-based
acceleration methods and volume data caching to increase their performance. In the
past two years, both the porting of global illumination algorithms to the GPU and
the inception of new, real-time methods for approximating indirect lighting have
gained significant interest from the research community and the game industry.

Radiosity based methods in voxel space have addressed the illumination prob-
lem, like Greger et al. [6] and Chatelier et al. [1] but their results were not computed
in real-time and had large storage requirements. Modern advances of the same ap-
proach, Kaplanyan [9], yielded much faster results than before, but ignored indirect
occlusion and secondary light bounces.

The Irradiance Volume, which was first introduced by Greger et al. [6], regards a
set of single irradiance samples, parameterized by direction, storing incoming light
for a particular point in space (i.e. the light that flowed through that point). The
method had large storage requirements as neither an environment map nor spherical
harmonics were used for the irradiance storage. With a set of samples they approxi-
mated the irradiance of a volume, which was generally time-consuming to compute
but trivial to access afterwards. With an irradiance volume they efficiently estimated
the global illumination of a scene.

Instant radiosity methods, introduced by Keller [10], approximate the indirect
illumination of a scene using a set of VPLs. A number of photons are traced into
the scene and VPLs are created at surface hit points, then the scene is rendered, as
lit by each VPL. The major cost of this method is the calculation of shadows from
a potentially large number of point lights but since it does not require any complex
data structures it is a very good candidate for a GPU implementation. Lightcuts [18]
reduce the number of the required shadow queries by clustering the VPLs in groups
and using one shadow query per cluster, but the performance is still far from real
time.

Interactive Volume-based Indirect Illumination of Dynamic Scenes 3

Reflective shadow maps [3] consider the pixels of a shadow map as VPLs, but
the contribution of these lights is gathered without taking scene occlusion into ac-
count. To achieve interactive frame rates, screen space interpolation is required and
the method is limited to the first bounce of indirect illumination. An extension of
this method by the same authors [4] reorganizes the computation of the indirect light
to achieve better performance, but it still ignores occlusion for the indirect lighting.
Imperfect shadow maps [14] use a point based representation of the scene to effi-
ciently render extremely rough approximations of the shadow maps for all the VPLs
in one pass. They achieve interactive frame rates but indirect shadows are smoothed
out considerably by the imperfections and the low resolution of the shadow maps.

Jensen [7] introduced the concept of photon mapping, where in a first pass pho-
tons are traced from the light sources into the scene and stored in a k-d tree and in
a second pass the indirect illumination of visible surface points is approximated by
gathering the k nearest photons. McGuire [12] computes the first bounce of the pho-
tons using rasterization on the GPU, continues the photon tracing on the CPU for
the rest of the bounces and finally scatters the illumination from the photons using
the GPU. Since part of the photon tracing still runs on the CPU, a large number of
parallel cores are required to achieve interactive frame-rates.

Ritchell [15] extends previous methods for screen space ambient occlusion calcu-
lation [16] and introduces a method to approximate the first indirect diffuse bounce
of the light by only using information in the 2D frame buffer. This method has a
very low computational cost but the resulting illumination is hardly accurate since
it depends on the projection of the (visible only) objects on the screen.

The concept of interpolating indirect illumination from a cache was introduced
by [20]. Accurate irradiance estimates are computed using ray tracing on a few
surface points (irradiance sample points) and for the remaining surface points fast
interpolation is used. Wang [19] presents a method to calculate the irradiance sample
points in advance and implements the algorithm on the GPU. The method is accurate
but it achieves interactive frame rates only in very simple scenes.

Nijasure [13] uses spherical harmonics to store the incoming radiance of the
scene in a uniform grid structure. The surfaces are rendered by interpolating the
radiance from the closest grid points. This method supports multiple bounces and
indirect occlusion but it’s very expensive because it requires the complete scene to
be rendered in a cube map for the radiance estimation on each grid point.

Kaplanyan [9] also uses a regular grid to store the scene radiance, but for its
calculation he uses a propagation scheme to calculate the radiance distribution on
the scene. Radiance is initially injected in VPL positions and then it is iteratively
propagated through empty space. The method achieves very high performance but
completely ignores occlusion for the indirect light and secondary bounces.

4 A. Gaitatzes and P. Mavridis and G. Papaioannou

3 Mathematical Background

3.1 Review of Spherical Harmonics

The spherical harmonics (SH) are a set of orthonormal basis functions defined over a
sphere, in the same manner that the Fourier series is defined over an N-dimensional
periodical signal. The Spherical Harmonic (SH) functions in general are defined
on imaginary numbers, but since in graphics we are interested in approximating
real functions over the sphere (i.e. light intensity fields), we use the real spherical
harmonics basis. Given the standard parameterization of points on the surface of the
unit sphere into spherical coordinates

(sinθ cosϕ ,sinθ sinϕ ,cosθ)→ (x,y,z)

the the real SH basis functions of order l is defined as:

Y m
l (θ ,φ) =

√

2Km
l cos(mϕ)Pm

l (cosθ) m > 0√
2Km

l sin(−mϕ)P−m
l (cosθ) m < 0

K0
l P0

l (cosθ) m = 0
(1)

where l ∈ R+, −l ≤ m ≤ l, Pm
l is the associated Legendre polynomial, Km

l is the
scaling factor to normalize the functions and is defined as:

Km
l =

√
(2l +1)

4π
(l−|m|)!
(l + |m|)!

(2)

The spherical harmonics possess several important properties, such as rotation
invariance. This means that the SH approximation f of a spherical function f ro-
tated by some rotation operator R is the same regardless of the order of application
of the rotation: rotating the SH projection of f gives the same approximation as ro-
tating f and then projecting it. This prevents aliasing artifacts from occurring while
rotating functions and means that we can simply rotate the projection of a function
instead of re-projecting a rotated function.

Similar to the Fourier series expansion, a function on the sphere f (θ ,ϕ) can be
represented in terms of spherical harmonics coefficients fl,m as:

f (θ ,ϕ) =
∞

∑
l=0

l

∑
m=−l

fl,mY m
l (θ ,ϕ) (3)

A signal over a sphere is approximately reconstructed using a a truncated SH
series, by projecting the initial function f onto a finite set of SH coefficients up to
order l = n, l ∈ N. Typically, in computer graphics a maximum order of 6 is used.

Additionally, because of orthnormality, the integral of two reconstructed spheri-
cal functions that have been projected in the SH basis is reduced to the inner product

Interactive Volume-based Indirect Illumination of Dynamic Scenes 5

of the vectors of their SH coefficients. For band-limited SH functions of order n, the
integral becomes:

∫
f̃ (θ ,ϕ)g̃(θ ,ϕ) =

n

∑
l=0

l

∑
m=−l

fl,mgl,m (4)

3.2 Radiance Transfer

In order to accurately model light in an environment, the complete energy transfer
has to be evaluated on each surface location. The Rendering Equation, proposed by
Kajiya [8], associates the outgoing radiance Lo(x, ω⃗o) from a surface point x along
a particular viewing direction ω⃗o, with the intrinsic light emission Le(x, ω⃗o) at x
and the incident radiance from every direction ωi in the hemisphere Ω above x,
using a BRDF that depends only on the material properties and the wavelength of
the incident light. The hemisphere-integral form of the rendering equation can be
written as:

Lo(x, ω⃗o) = Le(x, ω⃗o)+
∫
Ω

Li(x, ω⃗i) fr(x, ω⃗i→ ω⃗o)cos(θ)dω⃗i (5)

where fr(x, ω⃗i → ω⃗o) is the bidirectional reflectivity distribution function of the
surface at point x, expressing how much of the incoming light arriving at x along
direction ω⃗i is reflected along the outgoing direction ω⃗o. Li(x, ω⃗i) is the light arriving
along direction ω⃗i.

If we group the cosine term and fr into a single transfer function T, (Sloan et al.
[17]), which expresses how point x responds to incoming illumination, then Equa-
tion 5 becomes:

Lo(x, ω⃗o) = Le(x, ω⃗o)+Lr(x, ω⃗o) = Le(x, ω⃗o)+
∫
Ω

Li(x, ω⃗i)T (x, ω⃗i→ ω⃗o)dω⃗i (6)

The above generic energy transfer equation can be used in fact to model any vari-
ation of the rendering equation. In our case, where a point in space (voxel center)
is illuminated, it is more convenient to consider an integral over the entire sphere
surrounding the voxel center. Furthermore, the voxel center can behave as a spheri-
cal particle, receiving energy with maximum flow from every direction. Therefore,
the cosine term is dropped as the projected solid angle towards the emitting location
along ω⃗i always equals dω⃗i.

Using the orthonormality property of the SH function basis (Eq. 4) and con-
sidering for the moment only the reflected radiance, the integral in Eq. 6 can be
approximated with a finite set of terms as:

6 A. Gaitatzes and P. Mavridis and G. Papaioannou

Lr(x, ω⃗o)≈
n

∑
l=0

l

∑
m=−l

Ll,mTl,m (7)

4 Method Overview

We have extended the work of Kaplanyan [9], in order to take into account oc-
clusion in the light transfer process and secondary light bounces. Our method is
based on the full voxelization of the geometry instead of the injection of only the
reflection shadow map points (VPLs) in a volume grid. This way, the presence of
geometry that is unlit by the direct illumination is also known and light intercep-
tion and reflection is possible. The voxelization records — among others — direct
illumination and scalar occupancy data, thus enabling the indirect illumination from
emissive materials and the transmission through transparent elements.

Our method consists of three stages. First the scene (or a user-centered part of it)
is discretized to a voxel representation. Next, the radiance of each voxel is iteratively
propagated in the volume and finally, during image rendering, the irradiance of each
surface point is calculated by sampling the radiance from the nearest voxels.

To this effect, we use several 3D volume buffers. An accumulation volume buffer
is used for the storage of radiance samples when light bounces off occupied voxels.
This buffer is sampled during the final rendering pass to reconstruct the indirect
illumination. For each color band it stores a spherical harmonic representation of the
radiance of the corresponding scene location (4 coefficients encoded as RGBA float
values). It is initialized with zero radiance. For the iterative radiance distribution, a
propagation volume buffer is used (see Section 4.2). The propagation buffer stores
a spherical harmonic representation of the radiance to be propagated in the next
propagation iteration. It is initialized with the radiance from the first bounce VPLs
(direct illumination). Both the accumulation and the propagation buffers are read
and write buffers. Our algorithm also reads information from one more read-only
volume buffer that contains information about the scene normals and surface albedo
(see Fig. 1(b),(c)). Average normals and space occupation (scalar voxelization value,
also accounting for transparency) are compacted into a single voxel value.

To discretize our scene in real time, we create a uniform spatial partitioning struc-
ture (voxel grid - see Section 4.1) on the GPU, where we store the geometry and
radiance samples. We inject VPLs in our voxel space, which are essentially hemi-
spherical lights with a cosine falloff. The VPLs are then approximated by a compact
spherical harmonic coefficients representation. See Fig. 1(d) and (e) respectively.
Similar to Kaplanyan [9], we use an iterative diffusion approach on the GPU to
propagate energy within space. In contrast to [9] though, since we obtain the space
occupation information from the voxelization (not-just VPLs), energy is propagated
only in void space, from one voxel boundary to the next. The propagated radiance is
reflected on occupied (voxelized) volume grid points and accumulated at these lo-
cations in the accumulation buffer (see Section 4.2). The new propagation direction
is determined by the stored average voxel normal of the occupied voxel.

Interactive Volume-based Indirect Illumination of Dynamic Scenes 7

Fig. 1 Several environments voxelized into a 643 grid. Column 1: a model of 10,220 triangles
(arena). Column 2: a model of 109,170 triangles (Knossos). Column 3: the sponza II atrium of
135,320 triangles (cross section depicted). All buffers are of floating point precision.

During the rendering pass (see Section 4.3), for each fragment, the volume is
queried as a texture and the closest texels (accumulated irradiance) are used to esti-
mate the global illumination at that point in the scene.

8 A. Gaitatzes and P. Mavridis and G. Papaioannou

4.1 Real-Time Voxelization

Instead of applying one of the fast binary GPU voxelization methods, such as Eise-
mann’s et al. [5], we use a variant of Chen’s et al. algorithm [2] because we need
to store multi-channel scalar data in each voxel. More specifically, we use the same
steps as Chen’s algorithm, for the slicing of the volume. The main difference is that
we do not use the originally proposed XOR operation because in practice, very few
models are watertight and many volume attributes cannot be defined for interior
voxels. Therefore, our method produces only volume shells.

In brief, for every volume slice (see Algorithm 1), a conventional scan-conversion
of the scene geometry takes place and the generated fragments correspond to the
voxels of this slice (Fig. 2). Rasterization is incremental and requires that the slope
of the dependent variable on the increment is less than 1. As far as the scan con-
version of a polygon onto the (slice-oriented) view plane is concerned, there are no
holes generated but when the fragments are stored as voxels, discontinuities along
the Z-axis occur (slicing direction). The XOR operation indirectly solved this prob-
lem (by filling in the missing fragments) but in our case this is not an option. The
problem is solved by repeating the scan-conversion process 3 times, once for each
primary axis. This way, we ensure that the depth-discontinuity in one orientation of
the view plane will be remedied in one of the two others (see Fig. 2(right)).

During the above 3-way voxelization, the radiosity of each grid cell is computed
using direct illumination (complete with shadows and emissive illumination). Three
buffers on the GPU are needed to store the temporary volume results of the three
slicing procedures (one for each different orientation of the object). Finally, those
three volumes are combined into one buffer, using the MAX frame buffer blending
operation. The maximum radiocity of each cell is stored as a spherical harmonic
representation. These values will be used as the initial radiance distribution in the
propagation buffer for the iterative radiance distribution.

Algorithm 1: Scene Voxelization

generate a bounding box of the scene;

for i← 1 to N volume slices do
define a voxel-deep, thin orthogonal viewing frustum along X-axis;
execute 2D scan conversion for all object faces;
store result in slice i of volume buffer-X;

end
repeat above loop for Y and Z axes;

combine the three temporary volumes, buffer[XYZ], into one final volume keeping the
MAX value for each corresponding cell in all three volumes;

Interactive Volume-based Indirect Illumination of Dynamic Scenes 9

Fig. 2 Slice-based voxelization (left) and composition of the three sub-volume passes into one
voxelized volume (right).

4.2 Iterative Radiance Distribution

Once we have injected the VPLs into the initial 3D volume, we need to propagate
their initial radiance to their neighboring voxels. The propagation stage consists of
several sequential iterations performed entirely on the GPU. Each iteration repre-
sents one discrete step of radiance propagation in the (empty) 3D volume. We ef-
fectively perform radiance shooting at each volume location by gathering radiance
instead from each one of the voxel’s neighbors (see Fig. 3) and interpolating the
weighted sum of the corresponding directional contributions on the GPU.

Fig. 3 Radiance Gathering Illustration (a). The radiance for the center voxel is gathered from
the values stored at the voxels of the surrounding cells. Radiance shooting (b) in the radiance
propagation procedure is equivalent to radiance gathering (c).

10 A. Gaitatzes and P. Mavridis and G. Papaioannou

Similar to [9], we split the integral of radiance gathering (Eq. 6 for spherical inte-
gration domain) into six sub-domains corresponding to the six sides of the receiving
voxel. Instead of considering only unobstructed propagation, though, the transfer
function Tj→i between the neighboring voxel j and the current voxel i is split into
a geometric (transfer) term Tcone(j) and a reflective term Tr(j). The four Tcone(j) co-
efficients are pre-computed from the six rotated spherical harmonic functions of a
90-degree cone. Tr(j) is used for the deflection of the incident radiance.

When voxel i corresponds to void space, radiance is propagated in the direction
from voxel j to i. This means that when no obstacle is encountered, Tr(j) coeffi-
cients are equal to 1. On the other hand, when voxel i is occupied, the spherical
harmonic function of the incident radiance from voxel j should be mirrored with
respect to the plane that is perpendicular to the plane of reflection and parallel to
the average normal direction stored in the volume buffer. This requires two SH rota-
tions and a mirroring operation. See [11] for details on the rotation of real spherical
harmonics. For speed and simplicity though, this operation is replaced by a mirror
reflection on the voxel boundary, i.e. along one of the three primary axes. There-
fore, the four coefficients of Tr(j) are 1 except the one corresponding to the mirror
direction. Taking into account the above factors, the gathering operation becomes:

∫
S

Li(x, ω⃗i)T (x, ω⃗i→ ω⃗o)dω⃗i =
6

∑
j=1

1

∑
l=0

l

∑
m=−l

L(j),l,mTcone(j),l,mTr(j),l,m (8)

Figure 4 demonstrates the propagation and radiance accumulation process.

Fig. 4 Simplified example of the propagation and light reflection process.

Interactive Volume-based Indirect Illumination of Dynamic Scenes 11

4.3 Final Illumination Reconstruction

During the final rendering pass, the irradiance at each surface point is computed
from the incident radiance Li that is stored in our uniform grid structure (accumula-
tion buffer). The irradiance E at point x can be derived by integrating the definition
of incident radiance over the hemisphere above x:

E(x) =
∫
Ω

Li(x, ω⃗i)cosθdω⃗i (9)

where θ is the angle between the surface normal and the incident radiance direction
ωi. The integration domain is the hemisphere Ω defined by the surface normal nx at
point x.

In order to include the color filtering at the final gathering stage as well as the
material emission, we can estimate the radiosity B(x). For diffuse surfaces, B(x) is
given by the following hemisphere-integral equation, after multiplying Eq. 5 with π
(and hense Li):

B(x) = Be(x)+
ρ(x)

π

∫
Ω

Bi(x, ω⃗i)cosθdω⃗i (10)

where ρ(x) is the albedo of the surface. If we change the integration domain to the
full sphere Ω ′, the previous equation can be rewritten as follows:

B(x) = Be(x)+
ρ(x)

π

∫
S

Bi(x, ω⃗i)T (nx, ω⃗i)ωi (11)

where the function T is defined as follows:

T (nx, ω⃗i) =

{
cosθ , θ < π/2
0, θ > π/2 (12)

This change of the integration domain is necessary because we are going to use
spherical harmonics, which are defined over the sphere and not the hemisphere.

Equation 11 is directly evaluated per pixel to give the final indirect lighting. In
our algorithm the radiance L is tri-linearly interpolated from the stored values in the
uniform grid structure. From the eight closest grid points only the ones correspond-
ing to occupied voxels are considered for interpolation. Li is already stored and in-
terpolated in spherical harmonic representation. We also build a spherical harmonic
representation for the function T , as described in [9] and the integral is calculated
per pixel as a simple dot product, as shown in Eq. 4.

12 A. Gaitatzes and P. Mavridis and G. Papaioannou

5 Results

We have integrated the above algorithm in a real time deferred renderer using
OpenGL and GLSL. Our proof of concept implementation uses a 2nd order spher-
ical harmonic representation, since the four SH coefficients, map very well to the
four component buffers supported by the graphics hardware. All results are rendered
on an nVIDIA GeForce GTX285 at 512x512 pixels with a 323 grid size. It should
be noted here that, excluding the final interpolation stage, the performance of the
indirect lighting computation in our method does not depend on the final screen res-
olution, but only on the voxel grid size and the number of propagation steps. This is
a big advantage over instant radiosity methods, like imperfect shadow maps.

Table 1 shows comprehensive time measurements for all the scenes detailed be-
low. All scenes are considered to have fully dynamic geometry and lighting condi-
tions. In all cases our algorithm achieves real time frame rates and sufficient accu-
racy in the reproduction of the indirect diffuse illumination, even though our imple-
mentation is not optimized in any way.

We have found that the propagation stage of our method is limited by the avail-
able memory bandwidth and not the computational speed. This is to be expected,
since the propagation kernel requires 52 floating point reads and 8 floating point
writes per color band. To save memory bandwidth we do not store the diffuse color
of the surfaces in the voxel structure, but after the first light bounce we consider it
constant and equal to 0.5 for each color band.

Figure 5 shows a direct comparison of our algorithm with a reference solution
on a simple test scene. We can see that our method reproduces the shape and the
properties of the indirect illumination in the reference solution.

Figure 6 shows a room lit through a set of open windows. This is a challenging
scene for global illumination algorithms, because only a small region on the left
wall is directly lit by the sun and the majority of the lighting in the room is indirect.
We can see that the simple light propagation method completely fails to reproduce
the indirect lighting in the room, since it is not taking into account secondary light
bounces and occlusion. At least two bounces of indirect lighting are required to get
meaningful results in this case. In our method, when a grid of size N is used, the
distance between the walls of the room is also N, so kN propagation steps are re-

Table 1 Time measurements of our test scenes in milliseconds. Only the voxelization and propa-
gation times are relevant to our work. The total rendering time includes the direct lighting compu-
tation and other effects and is given as a reference.

triangles grid size iterations voxelization propagation total time
(ms) (ms) (ms)

test scene 48 323 11 10 12 22
room 704 323 64 3 61 69
arena 10219 323 12 3 13 21
sponza 66454 323 11 10 11 28

Interactive Volume-based Indirect Illumination of Dynamic Scenes 13

Fig. 5 From left to right: reference solution computed with ray tracing (indirect illumination only),
our solution (indirect illumination only) and final image with direct and indirect lighting.

quired to compute k bounces of indirect illumination. This is a worst case scenario,
as in typical scenes light interaction from one end of the scene to the other is not
required. In this particular case we have used 64 propagation steps to simulate two
bounces of light on a 323 grid. The resulting illumination is visually pleasing, giv-
ing high contrast on the edge of the walls and the staircase. Since our algorithm
takes indirect occlusion in consideration, the area below the staircase is correctly
shadowed. We observe some artifacts below the windows, due to the imprecision of
the spherical harmonics and the fact that the grid cell on this area covers both the
edge of the wall and the empty space inside the window. Even with a number of
propagation steps this high, our method maintains easily an interactive frame-rate
since the propagation stage takes only 61 ms to complete.

A nice characteristic of our method is the predictable performance of the prop-
agation stage. We can easily calculate the time for the propagation step for each
individual voxel. This time is constant and independent from the scene complexity.
It should be noted of course that the performance may be constant and predictable,
but the same is not true for the accuracy and the quality of the resulting illumination.

Figure 7 shows the Sponza Atrium II, a typical scene in the global illumination
literature. The right part of the scene is directly lit by the sun, the left one is lit
only indirectly. As we can see, using only eleven propagation steps our method
successfully reproduces the low-frequency indirect illumination which is dominant
on the left part of the scene with very few visible artifacts.

Figure 8 shows an enclosed arena scene, a typical outdoor scene in video games.
Twelve propagation steps are used in this case and we can see that the resulting
indirect illumination greatly improves the visual quality of the final image.

5.1 Discussion

A nice feature of our method is that for scenes with static or smoothly changing
geometry and lighting conditions, the cost of the indirect illumination can be amor-
tized among many frames without introducing any visible artifacts. In other words,

14 A. Gaitatzes and P. Mavridis and G. Papaioannou

Fig. 6 (a) The room scene lit with direct lighting only. (b) Radiosity with 64 iterations. (c) Direct
and indirect illumination using our method. (d) The indirect illumination using light propagation
volumes [9]. (e) Reference radiosity using 2-bounce path tracing. (f) Reference final image using
path tracing.

the rate of indirect lighting updates can be reduced to meet the final performance
goals. For scenes with good temporal coherence — hence, with slow illumination
changes — it is possible to perform the 3-way voxelization in an interleaved manner
(one direction per frame). In this case the volume is completely updated after three
frames but the voxelization cost is reduced by a factor of three.

Fig. 7 From left to right: direct lighting, indirect illumination only and final image with direct and
indirect lighting.

Interactive Volume-based Indirect Illumination of Dynamic Scenes 15

Fig. 8 From left to right: direct only lighting, indirect illumination using our method and final
image with direct and indirect lighting.

Since voxelization is a rough discretization of the scene geometry, secondary
shadows from small scale geometric details cannot be reproduced accurately by our
method. Higher voxel resolutions can always be used, but with a performance hit.
Also, due to graphics hardware limitations, we only used second order spherical
harmonics, which they do not have sufficient accuracy to represent high frequency
indirect light. This is not crucial if the direct illumination covers large parts of a
scene yielding only very low-frequency indirect shadows in the first place. Interest-
ingly, imperfect shadow maps have exactly the same issue (but for different reasons)
but we think that our method is preferable since it does not require the maintenance
of a secondary point based scene representation and the performance is mostly in-
dependent from final image resolution.

The performance and quality of our method depends on two parameters: the vol-
ume resolution and the number of iterations. Empirically, we have found that a grid
size of 32 is sufficient in most cases. For outdoor scenes we have found that a low
iteration count (around 12) is sufficient but for indoor ones a much higher iteration
count is required (around 64) to accurately simulate the bouncing of the light inside
the building.

Fig. 9 The Knossos model (http://graphics.cs.aueb.gr/downloads/knossos.rar). From left to right:
direct lighting, radiosity using our method and final image with direct and indirect lighting.

16 A. Gaitatzes and P. Mavridis and G. Papaioannou

6 Conclusion and Future Work

We have presented a new method for the computation of indirect diffuse light trans-
port in large and fully dynamic scenes in real-time. Unlike previous work, our
method takes in to account indirect occlusion and secondary light bounces. We have
demonstrated that our method gives good results in a variety of test cases and al-
ways maintains a high frame rate. Since the test results showed that the voxelization
step is relatively costly, in the future we intent to introduce a much faster voxeliza-
tion scheme. Furthermore, the possibility of a more accurate but still manageable
radiance deflection mechanism will be investigated. Finally, another interesting di-
rection of research is to extend this method to take specular light transport in to
account.

References

1. Chatelier, P.Y., Malgouyres, R.: A low-complexity discrete radiosity method. Computers and
Graphics 30(1), 37–45 (2006). URL http://dx.doi.org/10.1016/j.cag.2005.
10.008

2. Chen, H., Fang, S.: Fast voxelization of three-dimensional synthetic objects. Journal of Graph-
ics Tools 3(4), 33–45 (1998)

3. Dachsbacher, C., Stamminger, M.: Reflective shadow maps. In: I3D ’05: Proceedings of the
2005 Symposium on Interactive 3D Graphics and Games, pp. 203–231. ACM, New York, NY,
USA (2005). DOI http://doi.acm.org/10.1145/1053427.1053460

4. Dachsbacher, C., Stamminger, M.: Splatting indirect illumination. In: I3D ’06: Proceedings of
the 2006 Symposium on Interactive 3D Graphics and Games, pp. 93–100. ACM, New York,
NY, USA (2006). DOI http://doi.acm.org/10.1145/1111411.1111428

5. Eisemann, E., Décoret, X.: Single-pass GPU solid voxelization for real-time applications. In:
GI ’08: Proceedings of Graphics Interface 2008, vol. 322, pp. 73–80. Canadian Information
Processing Society, Toronto, Ontario, Canada (2008)

6. Greger, G., Shirley, P., Hubbard, P.M., Greenberg, D.P.: The irradiance volume. IEEE Com-
puter Graphics and Applications 18(2), 32–43 (1998). URL http://dx.doi.org/10.
1109/38.656788

7. Jensen, H.W.: Global illumination using photon maps. In: Proceedings of the eurographics
workshop on Rendering techniques ’96, pp. 21–30. Springer-Verlag, London, UK (1996)

8. Kajiya, J.T.: The rendering equation. In: SIGGRAPH ’86: Proceedings of the 13th annual
conference on Computer graphics and interactive techniques, vol. 20, pp. 143–150. ACM,
New York, NY, USA (1986). DOI http://doi.acm.org/10.1145/15922.15902

9. Kaplanyan, A.: Light propagation volumes in cryengine 3. In: SIGGRAPH ’09: ACM SIG-
GRAPH 2009 courses. ACM, New York, NY, USA (2009)

10. Keller, A.: Instant radiosity. In: SIGGRAPH ’97: Proceedings of the 24th annual conference
on Computer graphics and interactive techniques, pp. 49–56. ACM Press/Addison-Wesley
Publishing Co., New York, NY, USA (1997). DOI http://doi.acm.org/10.1145/258734.258769

11. Křivánek, J., Konttinen, J., Pattanaik, S., Bouatouch, K., Žára, J.: Fast approximation to spher-
ical harmonics rotation. In: SIGGRAPH ’06: ACM SIGGRAPH 2006 Sketches, p. 154. ACM,
New York, NY, USA (2006). DOI http://doi.acm.org/10.1145/1179849.1180042

12. McGuire, M., Luebke, D.: Hardware-accelerated global illumination by image space photon
mapping. In: HPG ’09: Proceedings of the Conference on High Performance Graphics 2009,
pp. 77–89. ACM, New York, NY, USA (2009). DOI http://doi.acm.org/10.1145/1572769.
1572783

http://dx.doi.org/10.1016/j.cag.2005.10.008
http://dx.doi.org/10.1016/j.cag.2005.10.008
http://dx.doi.org/10.1109/38.656788
http://dx.doi.org/10.1109/38.656788

Interactive Volume-based Indirect Illumination of Dynamic Scenes 17

13. Nijasure, M., Pattanaik, S., Goel, V.: Real-time global illumination on the GPU. Journal of
Graphics Tools 10(2), 55–71 (2005)

14. Ritschel, T., Grosch, T., Kim, M.H., Seidel, H.P., Dachsbacher, C., Kautz, J.: Imperfect shadow
maps for efficient computation of indirect illumination. In: SIGGRAPH Asia ’08: ACM
SIGGRAPH Asia 2008 papers, vol. 27, pp. 1–8. ACM, New York, NY, USA (2008). DOI
http://doi.acm.org/10.1145/1409060.1409082

15. Ritschel, T., Grosch, T., Seidel, H.P.: Approximating dynamic global illumination in image
space. In: Proceedings of the 2009 Symposium on Interactive 3D Graphics and Games, I3D
’09, pp. 75–82. ACM, New York, NY, USA (2009). DOI http://doi.acm.org/10.1145/1507149.
1507161

16. Shanmugam, P., Arikan, O.: Hardware accelerated ambient occlusion techniques on gpus. In:
Proceedings of the 2007 Symposium on Interactive 3D Graphics and Games, I3D ’07, pp. 73–
80. ACM, New York, NY, USA (2007). DOI http://doi.acm.org/10.1145/1230100.1230113

17. Sloan, P.P., Kautz, J., Snyder, J.: Precomputed radiance transfer for real-time rendering in
dynamic, low-frequency lighting environments. In: SIGGRAPH ’02: Proceedings of the 29th
annual conference on Computer graphics and interactive techniques, pp. 527–536. ACM, New
York, NY, USA (2002). DOI http://doi.acm.org/10.1145/566570.566612

18. Walter, B., Fernandez, S., Arbree, A., Bala, K., Donikian, M., Greenberg, D.P.: Lightcuts: a
scalable approach to illumination. In: ACM Transactions on Graphics, vol. 24, pp. 1098–1107.
ACM, New York, NY, USA (2005). DOI http://doi.acm.org/10.1145/1186822.1073318

19. Wang, R., Wang, R., Zhou, K., Pan, M., Bao, H.: An efficient gpu-based approach for interac-
tive global illumination. In: SIGGRAPH ’09: ACM SIGGRAPH 2009 papers, pp. 1–8. ACM,
New York, NY, USA (2009). DOI http://doi.acm.org/10.1145/1576246.1531397

20. Ward, G.J., Rubinstein, F.M., Clear, R.D.: A ray tracing solution for diffuse interreflection.
In: SIGGRAPH ’88: Proceedings of the 15th annual conference on Computer graphics and
interactive techniques, pp. 85–92. ACM, New York, NY, USA (1988). DOI http://doi.acm.
org/10.1145/54852.378490

	Interactive Volume-based Indirect Illumination of Dynamic Scenes
	Athanasios Gaitatzes and Pavlos Mavridis and Georgios Papaioannou
	Introduction
	Previous Work
	Mathematical Background
	Review of Spherical Harmonics
	Radiance Transfer

	Method Overview
	Real-Time Voxelization
	Iterative Radiance Distribution
	Final Illumination Reconstruction

	Results
	Discussion

	Conclusion and Future Work
	References

